
An Extended Access Control System For Windows XP

 1

AN EXTENDED ACCESS CONTROL SYSTEM
FOR WINDOWS XP

AUTHORS

Roberto Battistoni1, Emanuele Gabrielli2, Luigi Vincenzo Mancini2

1 Secure Edge s.r.l.
Via Palmiro Togliatti 1601, 00155 Rome, Italy
r.battistoni@computer.org

2 Dipartimento di Informatica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Rome, Italy
gabrielli@dsi.uniroma1.it
lv.mancini@dsi.uniroma1.it

ABSTRACT

We propose an access control systems, called WHIPS that controls the invocation of all the system calls

critical for the security of Windows OS. WHIPS is implemented as a kernel driver, also called kernel

module, using undocumented structure of the Windows kernel, where it is integrate without requiring

changes in the kernel data structures and algorithms. WHIPS is also transparent to the application processes

that continue to work correctly with no need of source code changes or re-compilation. A working prototype

has been implemented as a kernel extension of Windows XP.

Keywords. Access Control. Privileged Processes. Critical System calls. Native API. Windows services.

Buffer overflow. Exploit. Windows Operating System. Intrusion Detection System. Intrusion Prevention

System.

1 INTRODUCTION

Attacks to the security of network clients and servers are often based on the exploitation of flaws present in a

specific application process. By means of widely known techniques [Al96, Co00], a malicious user may

corrupt one or more memory buffers in such a way that on return from a function call, a different piece of

code, “injected” by the attacker, is executed by the flawed application process. Obviously the buggy

application process maintains its special privileges (if any). As a consequence, if the attack is successful

against a privileged process the attacker may gain full control of the entire system. For example, the

malicious code could execute a shell (shell or cmd.exe) in the privileged application context and allow the

attacker to become an administrator of the system. An example of recently exploit using Buffer Overflow is

An Extended Access Control System For Windows XP

 2

the slammer worm [MPSW03] that attacks the MS -SQL server for Windows 2000/XP to gain high privileges

and saturates the network bandwidth causing a denial of service attacks.

This paper presents the design and implementation of an extended access control system for Windows XP

that, by monitoring the system calls made by the application processes, allows immediate detection of

security rules violations. The proposed prototype employs interposition at the system call interface to

implement the access control functionality and requires no change to the kernel code and to the syntax and

semantics of existing system calls. Basically, the system call execution is allowed just in case the invoking

process and the value of the arguments comply with the rules kept in an Access Control Database (ACD)

within the kernel. The proposed access control system intends to protect against any technique that allows an

attacker to hijack the control of a privileged process.

The REMUS system [BGM02] has shown that immediate detection of security rules violations can be

achieved by monitoring the system calls made by processes in Linux. Here we try to apply a similar

technique to the Windows XP OS. The access control system proposed here is called WHIPS, Windows-nt

family Host Intrusion Prevention System. Indeed, Intrusion Prevention Systems (IPSs) strive to stop an

intrusion attempt using a preventive action on hosts to protect the systems under attacks. The WHIPS

prototype runs under Windows NT, Windows 2000 and Windows XP. In the following, by the word

Windows we refer Windows XP, but the consideration and the prototype design are applicable to all the

Windows NT family OS, born in 1993 with the first version Windows NT 3.51.

The rest of the paper is organized as follows. Section 2 characterizes the privileged and dangerous processes

and defines when a system call is critical and dangerous for a Window s system, showing how the Windows

system call are invoked by the user processes. Section 3 proposes the WHIPS prototype, showing the

implementation and the performance analyses of the prototype.

2 SECURITY PROBLEM: PRIVILEGED PROCESSES AND CRITICAL
SYSTEM CALLS

In order to gain control of an OS, an attacker has to locate a target process that run with high privileges in the

system. For example, if the OS belong to Linux family, the privileged processes include daemons and setuid

processes that execute their code with the effective user root (EUID=0). In the following, first we introduce

the Windows processes security context and then we characterize when a process is privileged or dangerous

and when a system call is critical or dangerous in Windows.

2.1 Process Security Context

This section examines the Security Identity Descriptor (SID), and the Access Token (AT), which are the

components of a process structure that represents its security context.

An Extended Access Control System For Windows XP

 3

2.1.1 Security Identity Descriptor

Security Identity Descriptors (SIDs) identify the entities that execute the operations in a Windows system

and may represent a user, a group, a machine or a domain. If G is the groups set, U is the users set, M is the

machine set, and D is the domain set, every element in G, U, M and D has a corresponding SID.

// The structure of an SID is as follows:
//
// 1 1 1 1 1 1
// 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 bit
// +---+
// | SubAuthorityCount |Reserved (SBZ) | Revision |
// +---+
// | IdentifierAuthority[0] |
// +---+
// | IdentifierAuthority[1] |
// +---+
// | IdentifierAuthority[2] |
// +---+
// | |
// +- - - - - - - - SubAuthority[] - - - - - - - - -+
// | |
// +---+

Figure 1 – SID structure.

Figure 1 shows the structure of a SID, which is a variable length numeric structure with the following fields:

§ Reserved, Revision: reserved bits and revision number, 8 bits;

§ SubAuthorityCount: number of subauthorities, 8 bits;

§ IdentifierAuthority [0..2]: a maximum of three Identifier Authority, 16 bits each one;

§ SubAuthority [0..N]: an array of subauthorities and it s Relative ID (RID).

A RID (relative number) is a number that distinguishes two SIDs otherwise equal in a Windows system. This

is an example of a SID number:

S-1-5-21-1123561945-1957994488-854245398-1000

 Figure 2 – SID example.

S is only a fixed character for SID number, 1 is the revision number, 5 and 21 are two Identifier Number and

1123561945-1957994488-854245398 are three SubAuthority number, finally 1000 is RID number. Every

Windows system has a lot of SIDs; some of them identify particular users or groups and are called Well-

Known SIDs [Mi02a].

2.1.2 Access Token

The SRM (Security Reference Monitor) is a Windows kernel component that uses a structure called Access

Token to identify a thread or a process security context [RuS01]. A security context is a set of privileges,

users and groups associated to a process or a thread. During the log-on procedure, Winlogon (one of the

Windows component performing users authentication) builds an initial token that represents the user access,

An Extended Access Control System For Windows XP

 4

and links this token to the users shell process. All the processes created by the user inherit a copy of the

initial access token. Figure 3 examines a description of the Access token fields:

Figure 3 – Access Token structure.

§ Token source: short description of the entity creators of the token.

§ Impersonation type: impersonation type applied to the Access token.

§ Token ID: token unique identificator.

§ Authentication ID: identificator assigned by the token creator.

§ Expiration time: token expiration time, actually not used (tokens do not expire).

§ Default primary group and default DACL: predefined groups (only POSIX) and predefined
DACL for objects created by the process or thread, owner of the Access Token.

§ User account SID: user SID that has activated the process or thread.

§ Group 1..N SID : groups SIDs the user belongs to.

§ Restricted 1..N SID: restricted SIDs restrict the use of token.

§ Privilege 1..N: privileges list assigned to the token (ex: SeBackup, SeDebug, SeShutdown,
SeTakeOwnership, etc.) [RuS01].

We can have two types of Access Token:

§ Primary token: is a token that normally is assigned to a process to identify its security context.

§ Impersonation token: is a token that normally is assigned to a thread when an impersonation
activity occurs.

Every process has an Access Token called primary token. A process in Windows is passive, in the sense that

every process has associated a primary thread and a variable number of secondary threads that executes the

process operations. The primary thread inherits a copy of the primary token, whereas a secondary thread may

An Extended Access Control System For Windows XP

 5

inherit a copy of the primary token too, or may obtain a restricted copy of the primary token by the

impersonation mechanism.

2.1.3 Impersonation

Impersonation is a mechanism that allows a security context of a process or a thread to migrate in another

security context. For example, an impersonation occurs when a server accesses its resources on behalf of a

client. In this case, the impersonation mechanism allows the server process to use the security context of the

client that requested that particular operation [RuS01]. The possible impersonation types are:

§ ImpersonateNamedPipeClient: a server communicates with a client through a named pipe.

§ DdeImpersonateClient: a server communicates with the client through Dynamic Data Exchange
(DDE).

§ RpcImpersonateClient: a server communicates with the client through Remote Procedure Call
(RPC).

§ ImpersonateSelf: a thread can create an impersonation token that is simply a copy of its process
token. The thread can then alter its impersonation token, to disable SIDs or privileges.

§ ImpersonateSecurityContext: a Security Support Provider Interface (SSPI) package can
impersonate its clients. SSPIs implement a network security model such as LAN Manager 2 or
Kerberos.

To avoid an improper use, Windows does not permit a server to impersonate a client process without client

consensus. Some impersonation levels follow:

§ SecurityAnonymous: is the most restrictive level of impersonation, the server cannot impersonate
or identify the client.

§ SecurityIdentification: lets the server obtain the identity (the SIDs) of the client and the client
privileges, but the server cannot impersonate the client.

§ SecurityImpersonation : lets the server identify and impersonate the client on the local system.

§ SecurityDelegation: is the most permissive level of impersonation. It lets the server impersonate the
client on local and remote systems.

If a client does not choose an impersonation level, SecurityImpersonation is the default.

2.1.4 Windows Privileges

A privilege in Windows is the right to operate on a particular aspect of the entire system, so a privilege acts

on the entire system, whereas a right acts on an object of the system [Scm01]. A privilege may be assigned to

a user or a group in Windows. When a user logs on a Windows system, a process will be created and

assigned to the user. Then the privileges assigned to the user or the group will be added in the Access Token

privileges list of the user process.

There are many privileges in Windows each allowing a particular action on the sys tem, but not every

privilege is dangerous for the system security. Only a subset of the entire set of Windows privileges contains

dangerous privileges that can be exploited by a malicious user. Below is an example of dangerous privileges

[HLB01]:

An Extended Access Control System For Windows XP

 6

§ SeBackupPrivilege: permits to a user to perform a backup of some data even if the user has no
access rights to the data.

§ SeTcbPrivilege : with this privilege a user or a group is a trusted component of the OS (predefined
account LocalSystem is the only one that has this privilege in Windows by default).

§ SeDebugPrivilege : a user with this privilege can debug any process viewing and modifying the
process memory.

§ SeAssignPrimaryTokenPrivilege : replace a process-level token.

§ SeIncreaseQuotaPrivilege: adjust memory quotas for a process.

2.2 Privileged and dangerous processes

As discussed above, some privileges are dangerous in Windows OS. If we want to know if a process is

privileged, we must look to the process Access Token of the user that run the process.

A malicious user can attack these processes, and when the attacker runs a malicious code in the process

context, the attacker gains all the process privileges. If some privilege is dangerous, the process becomes

dangerous. Simply to identify the dangerous processes, one might look for dangerous privileges into the

process Access Token. Now assume that P is a set of processes, so { }121 ,...,, npppP = , where p1, p2…pn1 are

the processes in a Windows system, D is the set of dangerous processes, so { }221 ,...,, ndddD = ; D is a subset

of P, PD ⊆ . Assume that K is the set of privileged processes { }321 ,...,, nkkkK = , K is a subset of P, PK ⊆ .

The set KD ∩ is the set of privileged and dangerous processes, since in general KD ⊆ the set of privileged

and dangerous process is equal to D.

v Definition: a privileged process is a process with some Windows privilege.

v Definition: a dangerous process is a privileged process that has some dangerous privilege.

We can characterize the set D analysing the processes Access Token. If in the Access Token privileges list

there are one or more dangerous privileges, the process, owner of the Access Token, belongs to D. In the

following, we discuss a particular set of privileged processes: the Services.

2.2.1 Services

Almost every OS has a mechanism to start processes at system start up time that provide services not tied to

an interactive user. In Windows, such processes are called services. Services are similar to UNIX daemon

processes and often implement the server side of client/server applications.

On Windows, many services log-on to the system with a predefined account: System account (called

LocalSystem too). This account belongs to group Administrators and is very powerful because it has many

dangerous privileges. This is a critical point for the Windows security.

Often a careful analysis of services could restricts services privileges. This can be done with a new account

defined for the specific service, where this account has less privileges then System account [HLB01]. To

An Extended Access Control System For Windows XP

 7

avoid this security problem, in Windows XP there are two new accounts for services: local service and

network service. These two new XP accounts have minimum privileges necessary to the execution of some

services, typically Internet and network services. So an attack to these services is less powerful than an attack

to a service that log-on with System account [HLB01]. Tab. 1 presents the privileges of LocalSystem,

LocalService and NetworkService predefined account. How you can see, LocalSystem has almost all the

Windows privileges whereas LocalService and NetworkService have a little bit of these privileges.

Privilege Local System Local Service Network Service
SeCreateTokenPrivilege X
SeAssignPrimaryTokenPrivilege X
SeLockMemoryPrivilege X
SeIncreaseQuotaPrivilege X
SeMachineAccountPrivilege
SeTcbPrivilege X
SeSecurityPrivilege X
SeTakeOwnershipPrivilege X
SeLoadDriverPrivilege X
SeSystemProfilePrivilege
SeSystemtimePrivilege X X X
SeProfileSingleProcessPrivilege X
SeIncreaseBasePriorityPrivilege X
SeCreatePagefilePrivilege X
SeCreatePermanentPrivilege X
SeBackupPrivilege X
SeRestorePrivilege X
SeShutdownPrivilege X
SeDebugPrivilege X
SeAuditPrivilege X X X
SeSystemEnvironmentPrivilege X
SeChangeNotifyPrivilege X X X
SeRemoteShutdownPrivilege
SeUndockPrivilege X X X
SeSyncAgentPrivilege
SeEnableDelegationPrivilege

Table 1 – Local System, Local Service and Network Service privileges.

2.2.2 Services Identification

To identify a service we must check the SIDs in the process Access Token, precisely the so-called Well

Known SIDs. We have two possibility: if the service logs on to the system with LocalSystem account, the

user account SID in the Access Token, is equal to string “S-1-5-18” , Local System SID. Otherwise, we must

look in groups SIDs; the process is a service if there is Well-Known SID Service represented by the string “S-

1-5-6”. But it is not simple to know exactly when a process is a service. We need some implications that

help us.

v Process is a Service ⇒ Access Token User SID is equal to Local System SID, or in the Access

Token Group SIDs is present Service SID: if we consider a service process then its Access Token

contains the LocalSystem or Service Well known SID.

v Access Token Group SIDs has Service SID⇒ process is a Service : if Service Well known SID

appears in the group section of the process Access Token, process is securely a service.

An Extended Access Control System For Windows XP

 8

v Access Token User SID is equal to LocalSystem SID ⇒ process IS NOT NECESSARILY a

service: if user SID is LocalSystem the process, owner of the Access Token, is not necessarily a

service, it could be a system process too.

If we consider only the first implication, we will find a set of processes that contains securely set of services,

but is not necessarily equals to this set. Below we present a simply pseudo-code test to determine if a process

is a service or a system process:

If (USER-SID==”Local System SID”) OR (GROUP-SID includes “Service SID”)

 (process_type=SERVICE) OR (process_type=SYSTEM_PROCESS)
 else
 (process_type!=SERVICE) AND (Process_type!=SYSTEM_PROCESS)

Figure 4 – Test to determine if a process is a service or a system process.

2.3 Critical and dangerous system calls

In this section, we introduce the definition of system calls in Windows and then we characterize when a

system call is a critical system call.

2.3.1 Native APIs: Windows system calls

APIs (Application Programming Interfaces) are programming functions held in dynamic library, and run in

user-mode space and kernel-mode space. We call native APIs [Ne00] the APIs in kernel-mode that represent

the system call of Windows. We call simply APIs the APIs in user-mode space.

Four dynamic libraries export APIs of the Win32 Subsystem:

• User32.dll: interface APIs.

• Gdi32.dll: graphic interface APIs.

• Kernel32.dll: system management APIs.

• Advapi32.dll: advanced system management APIs (registry, lsass, etc.).

The APIs in user32.dll and gdi32.dll invoke the native APIs implemented in kernel mode by win32k.sys

module, which is the kernel mode of the Win32 subsystem. The APIs exported by kernel32.dll (system APIs)

use a particular library Ntdll.dll that invokes native APIs in the kernel. Native APIs invoked by ntdll.dll, are

the Windows system calls.

An Extended Access Control System For Windows XP

 9

Figure 5 – System Service Table (SST).

Figure 5 shows that when an API of Kernel32.dll is called by an application, this API recalls one or more

functions present in ntdll.dll. This library represents a bridge between user -mode and kernel-mode space

[Ne00, Osr03]. The user-mode library Ntdll.dll is the front-end of the native APIs, which are implemented in

the Windows kernel, ntoskrnl.exe.

Ntdll.dll exports all the native APIs with two type of function name prefix: Nt and Zw. True native APIs (in

the kernel) have the same name of APIs exported by Ntdll.dll, but they are not the same functions.

Figure 6 shows an example of the native API NtCreateFile(), obtained disassembling ntdll.dll.

NtCreateFile:

mov eax,0x0000001A
lea edx,[esp+04]
int 0x2E
ret 0x2C

Figure 6 - Assembly code of NtCreateFile in NTDLL.DLL.

Function NtCreateFile loads registry EAX with the index 0x1A of the native API in a particular table called

System Service Table (KiServiceTable, fig. 8), then EDX registry points to the user-mode stack, ESP+04,

where there are the parameters of Native API, and finally raises interrupt 0x2E that executes the System

Service Dispatcher of Windows (defined in Section 2.3.1.1). System Service Dispatcher is the kernel routine

that invokes the true native API in the kernel [Ne00, Osr03].

Not all the native API exported by Ntdll.dll are exported by ntoskrnl.exe. This probably, is to prevent

unauthorized use of particular and dangerous native API by a driver [Scr01, Ne00].

Disassembling the library ntdll.dll, we can observe that every Nt native API and its corresponding Zw native

API have the same assembly code represented in fig. 6. If we disassemble ntoskrnl.exe, the true native APIs

with the Nt prefix contain the true code of native API, and the native APIs with the Zw prefix have the

representation in fig. 6, see also [Ne00, Osr03].

An Extended Access Control System For Windows XP

 10

2.3.1.1 System Service dispatcher

Dispatcher of interrupt 0x2E is the System Service Dispatcher routine. It is implemented in the executive

layer of the Windows kernel, trough the kernel function KiSystemService(). Figure 7 shows that the APIs in

gdi32.dll and user32.dll call directly the dispatcher KiSystemService(), and after the dispatcher invokes

functions in win32k.sys module. The APIs in kernel32.dll invoke the functions exported by ntdll.dll and then

that functions call the native APIs in Windows kernel.

Figure 7 - Dispatching of native APIs and USER & GDI APIs.

When KiSystemService() is invoked, the dispatcher runs a series of control. First it controls the validity of

index passed in EAX register, then it controls if the space expected for the native API parameters is correct

and finally executes the native API in the kernel or APIs in win32k.sys.

KiSystemService() uses a structure called System Service Descriptor Table (SDT). SDT is represented by the

KeServiceDescriptorTable structure (fig. 8), when KiSystemService manages native APIs, but when it

manages win32k.sys APIs, SDT is represented by another structure called KeServiceDescriptorTableShadow

[Scr01, HLB01].

An Extended Access Control System For Windows XP

 11

Figure 8 – KeServiceDescriptorTable.

Figure 8 shows that KeServiceDescriptorTable has two table pointers: KiServiceTable (System Service Table,

SST) and KiArgumentTable. First table contains an index for every native API. This index is used by native

API code in ntdll.dll to invoke the corresponding native API in the kernel (fig. 6). Second table contains, for

every native API, the allocation space for native API parameters. This space is used for the kernel-stack

memory allocation.

2.3.2 Critical and Dangerous native APIs

We have defined a native API as a Windows system call, but when is a system call in Windows a critical

system call?

A native API is a generic kernel function; it has a function name, a series of parameters and a return value. If

we consider a native API by itself, it is not critical, but it becomes critical when dangerous parameters are

passed to it.

Consider a simple example: the native API NtOpenFile(). Typically this native API opens an handle to a file

on the File System. Its only parameter is a pointer to a string that represents the file name (with path) that

will be opened. If the file name is readme.txt, this native API is not critical for the system. But, if the file to

be opened is equal to c:\winnt\cmd.exe, the Windows shell, the native API NtOpenFile with this particular

parameter is critical. So we define a critical system call as follows:

v Definition: a critical system call is a native API that could be invoked with dangerous parameters.

And we define a dangerous system call:

v Definition: a dangerous system call is a critical system call invoked by a dangerous process (see

Section 2.2).

v Definition: a critical system call is dangerous for the system only if the invocating process is a

dangerous process.

An Extended Access Control System For Windows XP

 12

A dangerous process that calls a native API with dangerous parameters may represents an attack of a

malicious user.

2.3.3 Native API Classification

Native APIs in Windows 2000 and XP are about 250, and only 25 of them are documented by Microsoft

with DDK (Driver Development Kit). All others native APIs are not documented. Fortunately Microsoft

gives us a utility, depends.exe that displays all the APIs exported by ntdll.dll and all the functions exported

by ntoskrnl.exe.

The problem is that we can view only the names of native APIs and not its parameters or its return value.

Gary Nebbet helps us with a “bible” of native API: “Windows NT/2000: Native API reference” [Ne00].

2.3.3.1 Native API Category

Below a first classification of native APIs by category, suggested by Russinovich [RuS01]. There are 21

categories in tab. 2 [Ru98]:

Index Category Description
1 Special Files These APIs are used to create files that have custom characteristics.
2 Drivers These functions are used by NT to load and unload device driver images from system memory.

3 Processor and
Bus Processor registers and components can be controlled via these functions.

4 Debugging and
Profiling

The profiling APIs provide a mechanism for sample-based profiling of kernel-mode execution. The debug control
function is used by WinDbg for obtaining internal kernel information and controlling thread and process execution.

5 Channels
These functions were introduced in NT 4.0 and are present in NT 5.0 Beta 1. However, they are all stubs that return
STATUS_NOT_IMPLEMENTED. Their names imply that they were intended to provide access to a
communications mechanism.

6 Power
There is only one Native API for power management in NT 4.0. Interestingly, this API was introduced in NT 4.0,
but was a stub that returned STATUS_NOT_IMPLEMENTED. NT 5.0 (2000) fleshes out the API and adds more
commands.

7 Plug-and-Play Like the Power API, some of these were introduced in NT 4.0 as unimplemented functions. NT 5.0 fleshes them out
and adds more.

8 Objects Object manager namespace objects are created and manipulated with these routines. A couple of these, like
NtClose, are general in that they are used with any object type.

9 Registry Win32 Registry functions basically map directly to these APIs, and many of them are documented in the DDK.

10 Local Procedure
Call

LPC is NT core interprocess communications mechanism. If you use RPC between processes on the same computer
you are using LPC indirectly

11 Security The Native security APIs are mapped almost directly by Win32 security APIs.

12 Processes and
Threads

These functions control processes and threads. Many have direct Win32 equivalents.

13 Atoms Atoms allow for the efficient storage and referencing of character strings.
14 Error Handling Device drivers and debuggers rely on these error handling routines.

15 Execution
Environment These functions are related to general execution environment.

16 Timers and
System Time Virtually all these routines have functionality accessible via Win32 APIs.

17 Synchronization Most synchronization objects have Win32 APIs, with the notable exception of event pairs. Event pairs are used for
high-performance interprocess synchronization by the LPC facility.

18 Memory Most of NT virtual memory APIs are accessible via Win32.

19 File and General
I/O

File I/O is the best documented of the native APIs since many device drivers must make use of it.

20 Miscellaneous These functions do not fall neatly into other categories.

21 Jobs These functions implement Job objects, which are new to NT 5.0. They are essentially a group of associated
processes that can be controlled as a single unit and that share job-execution time restrictions.

Table 2 – Native API categories

An Extended Access Control System For Windows XP

 13

Table 2 shows that in Windows we have many system calls, for every type of work. Linux give us many

information with its source code on its system calls, while Windows does not give us any information on its

system call.

For every native API category we could analyse what are the Windows critical system calls, but to do this we

must implement a general-purpose monitor for these system call. Now this is not in our work objectives.

3 THE WHIPS PROTOTYPE

WHIPS is a prototype for the detection and the prevention of the invocation of dangerous system calls in

Windows. This prototype is based on the initial idea related to the REMUS Project [BGM02]. REMUS is a

Reference Monitor (RM) for Linux OS and, in its first version, it was implemented like a RM embedded in

the Linux kernel: a patch to kernel source code and a recompiling process. The new version of REMUS is

implemented with a dynamic loadable module of Linux kernel.

WHIPS is implemented as a kernel driver, also called kernel module, using undocumented structure of

Windows kernel and also the routines typically employed for drivers development [BDP99]. The WHIPS

prototype can be seen as a system call RM for Windows.

3.1 Reference Monitor for Windows XP

Figure 9 – WHIPS Reference Monitor.

A Reference Monitor is a black box that filters every critical system call invoked by a process and establishes

if the critical system call is dangerous, as defined in Section 2.3.2. If the system call is not dangerous it will

be passed to the kernel for the execution, otherwise it will be stopped and not executed. RM control policies

are established by a small database called Access Control Database (ACD).

An Extended Access Control System For Windows XP

 14

ACD includes rule for a subset of every critical system call and every dangerous process (Cartesian product).

For every critical system call, if a rule exists in the ACD matching system call name, parameters and

invoking process, the system call is executed, otherwise it is stopped. The ACD defines the allowed actions

for RM. Now we examine the RM implemented by WHIPS.

Every time a process invokes a critical system call through ntdll.dll or a wrapper (a code that rise int 0x2E),

the dangerousness of the process is checked by WHIPS RM; the RM checks the match through dangerous

process, critical system call and its parameters with the ACD rules. If a rule exists that satisfies this match,

the native API is executed otherwise is not executed because it is a dangerous system call.

The technique we have used in WHIPS, suggested by Russinovich, Dabak et al. [Cru97, BDP99], replaces

the native APIs pointers in the System Service Table (fig. 10), with pointers to new native APIs supplied by

us. New native APIs are wrappers to original native APIs and implements RM concepts.

Figure 10 – WHIPS implementation architecture.

For every original critical native API we have introduced a new native API, where it has the same function

name with a prefix New (ex. NewNtCreateFile). This new API analyses its invoking process and its

parameters: if invoking process is dangerous and API is critical we know that the native API is dangerous, so

original API is not called and not executed, otherwise it is called and executed.

3.1.1 Access Control Database

In the WHIPS prototype the Access Control Database, ACD, is implemented by a simple text file (protected

by the system ACL and accessible only to the Administrator). The structure of a generic rule in the ACD is:

An Extended Access Control System For Windows XP

 15

Rule Type Process name Native API Name ParamAPI [1] … ParamAPI [n]

Defines if the
rule is an

effective rule or
a logging rule.

Dangerous
invoking process

Name.

Critical native API
name (with prefix Nt). Parameters of the native API.

Table 3 –ACD Rule schema

- Rule Type: can be debug or rule. When the type is rule, this means that the rule filters the execution of

system call. When the type is debug, the execution of a critical system call will be traced and not filtered.

- Process Name: is the name of the executable image that has activated the dangerous process. This name is a

string that identifies only the name and not the complete path. WHIPS prototype works entirely in kernel-

mode and it has not access to process block to retrieve the complete path of executable image. This

information is accessible only in user-mode.

- Native API: is the name, with prefix Nt, of the critical native API invoked by Process.

- Param [1..N]: are the actual parameters of the critical system call.

These ACD rules state that the process Process Name can execute the specific Native API with the specific

Param[1..N]. Now we examine some functions of WHIPS implementation.

3.1.2 System Service Table patch implementation

WHIPS is a kernel module, also called a driver in Windows. Now we examine a C-like representation of the

source code that realize the patch to the System Service Table (SST) of Windows.

Figure 11 shows the main function of the WHIPS prototype. This is the common main function of all the

drivers in Windows OS. This function does not driver any peripheral of the System and the only work that it

does is calling the HookServices function at system start-up.

DriverEntry(DriverObject)
{
 ProcessNameOffset=GetProcessNameOffset();
 IoCreateDevice(DriverObject,…,&deviceName,,…,&deviceObject);

 if (CreateDevice_success) {
 IoCreateSymbolicLink (&deviceLink,&deviceName);
 HookServices();
 DriverObject->MajorFunction[IRP_MJ_CREATE] =
 DriverObject->MajorFunction[IRP_MJ_CLOSE] =
 DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = DriverDispatch;
 DriverObject->DriverUnload = DriverUnload;
 return;
 }
 return;
}

Figure 11 – WHIPS main function.

Figure 12 shows the C-like representation of the System Service Table (SST) patch. The first operation that

it does is to load the ACD database in the kernel memory with LoadDB function, and then it patches the

An Extended Access Control System For Windows XP

 16

SST. With macro SYSTEMSERVICE it first saves the old reference to the native API in OldNtApiName, then

substitutes the old references in the SST with the new references to the new native APIs supplied by us.

HookServices()
{
 LoadDB("RmDB.rbt", &ruleArrayRM, &numruleRM);
 OldNtCreateFile =SYSTEMSERVICE(ZwCreateFile);
 OldNtOpenFile =SYSTEMSERVICE(ZwOpenFile);
 OldNtDeleteFile =SYSTEMSERVICE(ZwDeleteFile);
 OldNtOpenProcess =SYSTEMSERVICE(ZwOpenProcess);
 OldNtUnloadDriver =SYSTEMSERVICE(ZwUnloadDriver);

OldNtLoadDriver =SYSTEMSERVICE(ZwLoadDriver);
 OldNtClose =SYSTEMSERVICE(ZwClose);

 Disable_Interrupt;
 SYSTEMSERVICE(ZwCreateFile) =NewNtCreateFile;
 SYSTEMSERVICE(ZwOpenFile) =NewNtOpenFile;
 SYSTEMSERVICE(ZwDeleteFile) =NewNtDeleteFile;
 SYSTEMSERVICE(ZwOpenProcess) =NewNtOpenProcess;
 SYSTEMSERVICE(ZwUnloadDriver) =NewNtUnloadDriver;
 SYSTEMSERVICE(ZwLoadDriver) =NewNtLoadDriver;
 SYSTEMSERVICE(ZwClose) =NewNtClose;
 Able_Interrupt;
 return;
}

Figure 12 –System Service Table patch.

3.1.3 New native API Implementation

Figure 13 shows the representation in C-like of the NewNtOpenProcess. When a process calls the

NtOpenProcess, the new native API NewNtOpenProcess analyse its parameters. In this case it detects the

process name of its invoking process, and the process name that will be opened by the native API.

After it stores this data in a temporary rule called rule. This rule has a structure much similar to a rule in the

ACD, and we have cerate it to simplify our work.

Next thing to do is evaluate if the invoking process is a dangerous process. We know that the process is

critical because we have done a patch to this native API. The function isProcessDangerous() analyses the

Access Token of the invoking process and return true if the process is dangerous, false otherwise.

The function VerifyDebugNativeAPI() analyses if the native API must be traced in the debug environment,

while VerifyNativeApi() looks in to the ACD database to find a rule that satisfy the temporary rule. Only if

this function return true, original native API is called with the invocation of OldNtOpenProcess() saved in

the HookServices function.

An Extended Access Control System For Windows XP

 17

NewNtOpenProcess(phProcess,…,pClientId)
{
 startTimeO=KeQueryPerformanceCounter(&frequency);
 GetProcess(currProc);
 GetProcessByProcessID(pClient,pClientId);

 rule.processName=currProc;
 rule.api="ntopenprocess";
 rule.numparam=1;
 rule.api_param[0]=pClient;
 CurrentProcessIsDangerous=isProcessDangerous();
 if (VerifyDebugNativeAPI(rule,CurrentProcessIsDangerous))
 Insert_Debug_Information;

 if (VerifyNativeAPI(rule,CurrentProcessIsDangerous)) {
 endTimeO=KeQueryPerformanceCounter(&frequency);
 Show_Overhead_Information;
 OldNtOpenProcess(phProcess,…,pClientId);
 }
 else {
 endTimeO=KeQueryPerformanceCounter(&frequency);
 Show_Overhead_Information;
 }
 sendToDebug(rule,CurrentProcessIsDangerous);
 return;
}

Figure 13 – An example of NewNativeAPI implementation.

3.2 Performance Evaluation

The actual impact of WHIPS on the global system performance is negligible for all practical purposes. This

is mainly because the number of critical system call invocations is small with respect to the total number of

instructions executed by a process. However, in order to evaluate even the minimal overhead introduced by

the WHIPS prototype, we have devised further experiments based on micro benchmark. In particular, the

kernel function KeQueryPerformanceCounter() exported by the kernel is used. The header function is shown

in fig. 14:

LARGE_INTEGER KeQueryPerformanceCounter(PLARGE_INTEGER PerformanceFrequency);

Figure 14 – KeQueryPerformanceCounter function.

KeQueryPerformanceCounter() returns the clock ticks counter (#tick) from system boot, while the clock tick

counter per second (#tick/sec) is expressed by the function PerformanceFrequency.

If we would calculate the execution time of a piece of code, we may consider two invocations of function

KeQueryPerformanceCounter(). These two invocations determines respectively #tick1 and #tick2.

Assume
eFrequencyPerformanc

#tickT 1
1 = is the first invocations time and

eFrequencyPerformanc
tickT 2

2
#= is the

second invocations time. We must consider that KeQueryPerformanceCounter() introduces an overhead too,

and we call this QueryOverheadKeT∆ . To estimate QueryOverheadKeT∆ , we have measured two consecutive

invocations of KeQueryPerformanceCounter().

An Extended Access Control System For Windows XP

 18

Assume ∆T is the execution time of a generic source code block between two invocations of

KeQueryPerformanceCounter(), then QueryOverheadKeTTTT ∆−−=∆)(12

∆T cannot be less than QueryOverheadKeT∆ , so QueryOverheadKeTT ∆≥∆ . This is true because if the source code

block between two invocations of KeQueryPerformanceCounter() is empty then overhead is equal to

QueryOverheadKeT∆ .

3.2.1 Overhead of new native APIs

In figure 15 we have the elaboration block that contains the code to check the parameters of the native API

and the level of danger of the invoking process.

To estimate overhead introduced by a generic new native API under the WHIPS prototype, consider

frequency
startTimeO

T =1 and
frequency
endTimeO

T =2 , so the overhead introduced from any new native API is:

QueryOverheadKewNativeAPIOverheadNe TTTT ∆−−=∆)(12 .

NewNtApiName(…)
{

startTimeO=KeQueryPerformanceCounter(&frequency); // T1

 [Elaboration_Block]

if (VerifyNativeAPI(rule,CurrentProcessIsDangerous)) {
 […]
 endTimeO=KeQueryPerformanceCounter(&frequency); // T2
 OldNtApiName(…);

 Show_Overhead_Information;
 }
 else {
 endTimeO=KeQueryPerformanceCounter(&frequency); // T2
 Show_Overhead_Information;
 }
 […]
 return;
}

Figure 15 – Overhead of a generic NewNtApiName.

We have measured the execution time of the original native APIs in Windows, we call this nativeAPIT∆ . To do

this, we have inserted a call to function KeQueryPerformanceCounter() before the invocation of the original

API, and after the original native API calls completes (fig. 16).

Assume
frequency

startTimeAT =1 and
frequency
endTimeAT =2 , so QueryOverheadKenativeAPI TTTT ∆−−=∆)(12 .

An Extended Access Control System For Windows XP

 19

NewNtApiName(…)
{
 […]
 startTimeA=KeQueryPerformanceCounter(&frequency); // T1
 OldNtApiName(…);
 endTimeA=KeQueryPerformanceCounter(&frequency); // T2
 […]
 return;
}

Figure 16 – overhead of an original NtApiName.

3.2.2 Methodology of Measurement

The system utilized for the measurement is a Personal Computer with AMD Athlon CPU, with clock

frequency of 1200 Mhz, 512 Mbytes of RAM and Windows 2000 OS.

For every native APIs intercepted by the WHIPS prototype, we have performed a significant number of

experiments (~10.000), and we have elaborated these to obtain average times without spiced values. We have

determined the average overhead introduced by every new native API, wNativeAPIOverheadNeT∆ , and the average

time of original native API, NativeAPIT∆ .

The average overhead of function KeQueryPerformanceCounter(), QueryOverheadKeT∆ , is ~0,82 µsec on our

Test PC. For every measurement:

v QueryOverheadKewNativeAPIOverheadNewNativeAPIOverheadNewNativeAPIOverheadNe TTTT ∆−−=∆)(,1,2

v ueryOverheadeQNativeAPINativeAPINativeAPI TTTT ∆−−=∆)(,1,2 .

API Average Execution Time API Incidence

API Time

NativeAPIT∆
(µsec)

Overhead Time

wNativeAPIOverheadNeT∆
(µSec)

% Overhead

(%)

 A O I: O/A*100

NtClose 7,67886 6,36530 83%

NtCreateFile 246,74359 21,51743 9%

NtOpenFile 53,56300 20,67006 39%

NtOpenProcess 8,49002 23,23371 274%

Table 4 – Comparative table ApiTime and OverheadTime.

Table 4 compares execution time of the original native API (A) with the overhead introduced by the

corresponding new native API (O). As you can see, the overheads (O) are almost the same, except for the

NtClose native API. In fact the new native API NewNtClose performs few operations in the

Elaboration_Block of fig. 15, since it accepts few parameters. As for NewNtOpenFile and NewNtCreateFile,

An Extended Access Control System For Windows XP

 20

in Elaboration_Block, the name of the handle parameter of the native API must be determined, and this

cause an overhead of ~20 µsec. The last column (I) shows the percentage incidence of the new native API

overhead on the execution time of original native API.

In NewNtOpenProcess, the overhead is bigger than NewNtClose, this because in NewNtOpenProcess we

determine the name of the process parameter of the native API.

0%

50%

100%

150%

200%

250%

300%

NtClose NtCreateFile NtOpenFile NtOpenProcess

native API

%

OverheadTime/ApiTime (I)

Figure 17 – OverheadTime and ApiTime ratio.

The figure 17 shows a bar chart with percentage incidence (I) of every native API intercepted by the WHIPS

prototype. As you can see the highest incidence is NewNtOpenProcess incidence that introduces an overhead

of 274% respect to NtOpenProcess execution time. Lowest incidence is of NewNtCreateFile that introduces

an overhead of 9% respect to NtCreateFile execution time.

An Extended Access Control System For Windows XP

 21

0

50

100

150

200

250

300

NtClose NtCreateFile NtOpenFile NtOpenProcess

native API

m
ic

ro
se

c.

OverheadTime (O) ApiTime (A)

Figure 18 – Comparison between OverheadTime and ApiTime chart.

In figure 18 you can see a comparative bar chart between the overhead introduced by new native APIs (O)

and the execution time of original native API (A). Higher is the difference from the overhead and the

execution time and higher is the percentage incidence (I).

If we consider for ex. NtClose, we have a minimum difference, and this means that the overhead introduced

by WHIPS is near to the execution time of original native API. In the case of NtCreateFile the overhead is

much lesser than the execution time and the incidence is low. In NtOpenProcess the overhead is bigger than

the original native API execution time and the incidence is high.

RELATED WORKS

As for Windows OS, we could not find related works that follows similar ideas at the OS level, perhaps this

is because it is hard to design and to implement solutions in the Windows OS kernel based on undocumented

functions.

A related work for the Linux OS is the REMUS Project [BGM02] which implements a reference monitor for

the system call invocations in a loadable Linux kernel module. In REMUS, root processes and setuid

processes are privileged processes, and a dangerous system call is a critical system call invoked by a

dangerous process.

CONCLUDING REMARK

Our work defines privileged processes in Windows OS and proposes a methodology to discover the

processes that can be dangerous for the system. We have two ways, one implemented in our prototype, and

An Extended Access Control System For Windows XP

 22

the other in study. Defining dangerous processes is the first and much important step in this type of HIPS.

Next, we have characterized when a system call is critical in Windows OS. Union of dangerous processes

and critical system calls lead to the concept of dangerous system calls (see Section 2.3.2).

We have implemented the WHIPS prototype based on the above concepts. WHIPS stops common exploits

that use buffer overflow technique to do privilege escalation on a system. If a malicious user wants to

execute a shell in a context of the exploited process, WHIPS will prevent the attack by stopping the

execution of the dangerous system call that invokes the shell. This system call is dangerous because it is

critical and a dangerous process invokes it.

Future works include the inspection of all the native API in Windows OS for a full classification of the

system calls according to their level of danger for the system security. Another step could be to implement a

Web-service like Windows Update, named WHIPS ACD update that permits to download new sets of rule to

configure the ACD automatically. This simplifies the definition of the rule in the ACD database. WHIPS

could be more efficient if implemented directly in Windows kernel, but to do this we must access the source

code of the Windows kernel, and at the moment this is not allowed by Microsoft license agreement.

ACKNOWLEDGEMENTS

We would like to thank Dejan Maksimovic for useful suggestions on the implementation of WHIPS

prototype. The authors gratefully acknowledge the anonymous reference for their helpful comments.

REFERENCES

[Ab95] Abrams et al., “Information Security: An Integrated Collection of Essays”, IEEE Computer
Society Press, 1995.

[Al96] Aleph One, “Smashing the stack for fun and profit”, Phrack Magazine, vol 49, 1996.

[An01] Anonymous, “Maximum Windows 2000 Security”, SAMS Publishing, 2001.

[Ba98] Badger, “Information Security: From Reference Monitors to Wrappers”, Trusted Information
Systems, IEEE AES Systems Magazine, Mar. 1998.

[BGM02] Bernaschi, Gabrielli, Mancini, “REMUS: a security-enhanced operating system”, ACM
Transactions on Information and System Security, Vol. 5, No. 1, pp. 36-61, Feb. 2002.
http://remus.sourceforge.net/.

[BDP99] Borate, Dabak, Phadke, “Undocumented Windows NT”, M&T Books, 1999.

[CRu97] Cogswell, Russinovich, “Windows NT System-Call Hooking”, Dr. Dobb’s Journal, p. 261,
1997.

[Co00] Cowan et al, “Buffer Overflows: attacks and defences for the vulnerability of the decade”,
Proceedings IEEE DARPA Information Survivability Conference and Expo, Hilton Head, South
Carolina , 2000.

[CuR01] Cunnigham, Russel, “Hack Proofing”, McGrawHill, 2001.

An Extended Access Control System For Windows XP

 23

[Du01] Dutertre, Riemenschneider, Saidi, Stavridou, “Intrusion Tolerant Software Architectures”,
Proceedings IEEE DARPA Information Survivability Conference and Exposition, Anaheim,
California, 2001.

[HLB01] Howard, LeBlanc, “Writing Secure Code”, Microsoft Press, 2001.

[ISS98] ISS, “Network- vs. Host-Based Intrusion Detection”, Internet Security Systems, Atlanta, 1998,
http://documents.iss.net/whitepapers/nvh_ids.pdf.

[MPSW03] Moore, Paxson, Savage, Shannon, Staniford, Weaver, “Inside the slammer worm”, IEEE
Security&Privacy, pp.33-39, July-August 2003.

[Mi02a] Microsoft, “Well-Known Security Identifiers in Windows 2000”, Knowledge Base 243330,
2002, http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q243330&.

[Mi02b] Microsoft, “Always Preemptible and Always Interruptible”, Microsoft Software Development
Network (MSDN), 2002,

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/kmarch/hh/kmarch/intro_525j.asp.

[Ne00] Nebbet, “Windows NT/2000: Native API reference”, Macmillan Technical Publishing (MTP),
2000.

[On99] Oney, “Programming the Microsoft Windows Driver Model”, Microsoft Press, 1999.

[Osr03] OSR Open System Resources Inc, “Nt vs. Zw - Clearing Confusion On The Native API”, The
NT Insider, Vol 10, Issue 4, July-August 2003, Published: 15-Aug-03.

[RuS01] Russinovich, Solomon, “Inside Windows 2000: Third Edition”, Microsoft Press, 2001.

[Ru98] Russinovich, “Inside the Native API”, Systems Internals, 1998,
http://www.sysinternals.com/ntdll.htm.

[Scm01] Schmidt, “Microsoft Windows 2000 Security Handbook”, Que, 2001.

[Scr01] Schreiber, “Undocumented Windows 2000 Secrets”, Addison Wesley, 2001.

An Extended Access Control System For Windows XP

 24

SUMMARY

Authors .. 1
Abstract ... 1
1 Introduction 1
2 Security Problem: privileged processes and critical system calls .. 2

2.1 Process Security Context... 2
2.1.1 Security Identity Descriptor... 3
2.1.2 Access Token ... 3
2.1.3 Impersonation .. 5
2.1.4 Windows Privileges .. 5

2.2 Privileged and dangerous processes ... 6
2.2.1 Services ... 6
2.2.2 Services Identification... 7

2.3 Critical and dangerous system calls .. 8
2.3.1 Native APIs: Windows system calls ... 8

2.3.1.1 System Service dispatcher10
2.3.2 Critical and Dangerous native APIs ..11
2.3.3 Native API Classification...12

2.3.3.1 Native API Category................................12
3 The WHIPS prototype..13

3.1 Reference Monitor for Windows XP ...13
3.1.1 Access Control Database..14
3.1.2 System Service Table patch implementation ..15
3.1.3 New native API Implementation ...16

3.2 Performance Evaluation ...17
3.2.1 Overhead of new native APIs ...18
3.2.2 Methodology of Measurement ..19

Related Works...21
Concluding Remark...21
Acknowledgements ...22
References ..22
Summary24

