An Extended Access Control System For Windows XP

AN EXTENDED ACCESS CONTROL SYSTEM
FOR WINDOWS XP

AUTHORS

Roberto Battistoni', Emanudle Gabridli®, Luigi Vincenzo Mancin®

! Secure Edgesrl.
ViaPamiro Togliatti 1601, 00155 Rome, Italy
r.battistoni @computer.org

2 Dipartimento di Informatica
Universitadi Roma“La Sapienza’
Via Sdaia 113, 00198 Rome, Itay
gabridli@dsi.uniromal.it
Iv.mancini@dsi.uniomal.it

ABSTRACT

We propose an access control systems, caled WHIPS that controls the invocation of al the system cdls
critica for the security of Windows OS. WHIPS is implemented as a kernd driver, dso called kernd
module, usng undocumented structure of the Windows kernel, where it is integrate without requiring
changes in the kernd data structures and agorithms. WHIPS is aso transparent to the gpplication processes
that continue to work correctly with no need of source code changes or recompilation. A working prototype

has been implemented as akernel extension of Windows XP.

Keywords. Access Control. Privileged Processes. Critical System cals. Native APl. Windows services.
Buffer overflow. Exploit. Windows Operating System. Intrusion Detection System. Intrusion Prevention
System.

1 INTRODUCTION

Attacks to the security of network clients and servers are often based on the exploitation of flaws present in a
specific application process. By means of widely known techniques [AI96, Co0Q], a malicious user may
corrupt one or more memory buffers in such a way that on return from a function cal, a different piece of
code, “injected” by the atacker, is executed by the flawed application process. Obvioudy the buggy
gpplication process maintains its specid privileges (if any). As a consequence, if the attack is successful
againg a privileged process the atacker may gain full control of the entire system. For example, the
malicious code could execute a shell (shell or cmd.exe) in the privileged applicdion context and dlow the
atacker to become an adminigtrator of the system. An example of recently exploit using Buffer Overflow is

1

An Extended Access Control System For Windows XP

the dammer worm [MPSWO03] that attacks the MS-SQL server for Windows 2000/XP to gain high privileges
and saturates the network bandwidth causing a denia of service attacks.

This paper presents the design and implementation of an extended access control system for Windows XP
that, by monitoring the system cdls made by the application processes, alows immediate detection of
security rules violaions. The proposed prototype employs interposition at the system cdl interface to
implement the access control functionality and requires no change to the kernd code and to the syntax and
semantics of existing system cdls. Basicdly, the system cal execution is dlowed just in case the invoking
process and the value of the arguments comply with the rules kept in an Access Control Database (ACD)
within the kernel. The proposed access control system intends to protect against any technique that allows an
attacker to hijack the control of a privileged process.

The REMUS system [BGMO02] has shown that immediate detection of security rules violations can be
achieved by monitoring the system cals made by processes in Linux. Here we try to apply a smilar
technique to the Windows XP OS. The access control system proposed here is called WHIPS, Windows-nt
family Host Intruson Prevention System. Indeed, Intrusion Prevention Systems (IPSs) strive to stop an
intruson attempt using a preventive action on hosts to protect the systems under attacks. The WHIPS
prototype runs under Windows NT, Windows 2000 and Windows XP. In the following, by the word
Windows we refer Windows XP, but the consderation and the prototype design are gpplicable to al the
Windows NT family OS, born in 1993 with the first verson Windows NT 3.51.

The rest of the paper is organized as follows. Section 2 characterizes the privileged and dangerous processes
and defines when a system cdll is critica and dangerous for a Window s system, showing how the Windows
system call are invoked by the user processes. Section 3 proposes the WHIPS prototype, showing the
implementation and the performance anayses of the prototype.

2 SECURITY PROBLEM : PRIVILEGED PROCESSESAND CRITICAL
SYSTEM CALLS

In order to gain control of an OS, an attacker has to locate a target process that run with high privileges in the
system. For example, if the OS bedlong to Linux family, the privileged processes include daemonsand setuid
processes that execute their code with the effective user root (EUID=0). In the following, first we introduce
the Windows processes security context and then we characterize when a process is privileged or dangerous
and when a system call iscritical or dangerous in Windows.

2.1 ProcessSecurity Context

This section examines the Security Identity Descriptor (SID), and the Access Token (AT), which are the
components of a process structure that represents its security context.

N

An Extended Access Control System For Windows XP

2.1.1 Security Identity Descriptor

Security Identity Descriptors (SIDs) identify the entities that execute the operations in a Windows system

and may represent a user, a group, a machine or a domain. If G is the groups set, U isthe users set, M isthe
machine s&t, and D isthe domain s, every dementin G, U, M and D has acorresponding SID.

11 The structure of an SIDis as fol | ows:

/11

11 1 1 1 1 1 1

Il 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 O bi t
/1 R e R +
Il | SubAut hori t yCount | Reserved (SB2) | Revi si on |
/1 R e T +
/1 | I dentifierAuthority[0] |
!/ dfmco-occocococo-ccooScocoSoSooCoSoScoSoScocoSoScooo-coooScocosoos +
/1 | I dentifierAuthority[1] |
/Il I oos5000505505505050000550055555050555C50000550555050550555550S +
Il | I dentifierAuthority[2] |
// dmco-c-cococcococoococsooooSocoococoooocSooSoSoooooooSocooSoooos +
Il | |
/1 + - - - - - - - SubAuthority[] - - - - - - - - -+
Il | |
/1 R R R +

Figure1l —9D gructure.
Figure 1 shows the structure of a SID, which is a variable length numeric structure with the following fields:

= Reserved, Revision: reserved bits and revison number, 8 hits;

= SubAuthorityCount: number of subauthorities, 8 bits;

= |dentifier Authority [0..2]: amaximum of three Identifier Authority, 16 bits each one;
= SubAuthority [0..N]: an aray of subauthorities and its Relative ID (RID).

A RID (relative number) is a number that distinguishes two SIDs otherwise equd in a Windows system. This

is an example of a SID number:

S 1-5-21-1123561945- 1957994488- 854245398 - 1000

Figure 2 —SD example.

Sis only afixed character for SID number, 1 is the revision number, 5and 21 are two Identifier Number and
1123561945-1957994488-854245398 are three SubAuthority number, finaly 1000 is RID number. Every
Windows system has a lot of SIDs; some of them identify particular users @ groups and are cdled Wdll-
Known SIDs [Mi02a].

2.1.2 AccessToken

The SRM (Security Reference Monitor) is a Windows kernel component that uses a structure called Access
Token to identify a thread or a process security context [RuSO1]. A security context is a st of privileges,
users and groups associated to a process or a thread. During the log-on procedure, Winlogon (one of the
Windows component performing users authentication) builds an initial token that represents the user access,

~
<
-

An Extended Access Control System For Windows XP

and links this token to the users shell process. All the processes created by the user inherit a copy of the

initial access token. Figure 3 examines a description of the Access token fields:

Takien souroe

Irmpersanation Type

Taken [T

Authericatlen ID

Medified Ly

Expeation ime

Diefaul piimary graug

Diefau b DAacL

Ulggr account SI0

Group1 50

Group AsI0

Resiricted SID1

i1
i

i1
11

Restricted S0 n

Priuilesge 1

Privikge »

Figure 3 — Access Token structure.

= Token source: short description of the entity creators of the token.

= |mpersonation type: impersonation type applied to the Access token.

= Token I D: token unique identificator.

= Authentication | D: identificator assigned by the token crestor.

= Expiration time: token expiration time, actually not used (tokens do not expire).

= Default primary group and default DACL: predefined groups (only POSIX) and predefined
DACL for objects created by the process or thread, owner of the Access Token.

= User account SID: user SID that has activated the process or thread.
= Group 1.N SID:groups SIDs the user belongs to.
" Restricted 1..N SID: restricted SIDs redtrict the use of token.

= Privilege 1.\ privileges lig assigned to the token (ex: SeBackup, SeDebug, SeShutdown,
SETakeOwnership, etc.) [RuS01].

We can have two types of Access Token:

= Primary token: isatoken that normaly is assgned to a process to identify its security context.

= |mpersonation token: is a token that normaly is assigned to a thread when an impersonation
activity occurs.

Every process has an Access Token called primary token. A process in Windows is passive, in the sense that
every process has associaed a primary thread and a variable number of secondary threads that executes the
process operations. The primary thread inherits a copy of the primary token, wheress a secondary thread may

4

An Extended Access Control System For Windows XP

inherit a copy of the primary token too, or may obtain a restricted copy of the primary token by the

impersonation mechanism.

2.1.3 Impersonation

Impersonation is a mechanism that alows a security context of a process or a thread to mgrate in another
security context. For example, an impersonation occurs when a server accesses its resources on behalf of a
client. In this case, the impersonation mechanism alows the server process to use the security context of the
client that requested that particular operation [RuS01]. The possible impersonation types are:

* |ImpersonateNamedPipeClient: a server communicates with a client through a named pipe.

= DdelmpersonateClient: a server communicates with the client through Dynamic Data Exchange
(DDE).

= RpclmpersonateClient: a server communicates with the client through Remote Procedure Call
(RPC).

» ImpersonateSelf: a thread can create an impersonation token that is smply a copy of its process
token. The thread can then ater its impersonation token, to disable SIDs or privileges.

= |mpersonateSecurityContext: a Security Support Provider Interface (SSPI) package can
impersonate its clients. SSPIs implement a network security model such as LAN Manager 2 or
Kerberos.

To avoid an improper use, Windows does not permit a server to impersonate a client process without client
consensus. Some impersonation levels follow:

= SecurityAnonymous: is the most redtrictive level of impersonation, the server cannot impersonate
or identify the client.

= Securityldentification: lets the server obtain the identity (the SIDs) of the client and the client
privileges, but the server cannot impersonate the client.

* Securitylmpersonation: lets the server identify and impersonate the client on the loca system.

= SecurityDelegation: is the mogt permissive level of impersonation. It lets the server impersonate the
client on loca and remote systems.

If aclient does not choose an impersonation level, Securitylmpersonation is the default.

2.1.4 WindowsPrivileges

A privilege in Windows is the right to operate on a particular aspect of the entire system, so a privilege acts
on the entire system, whereas a right acts on an object of the system [ScmO01]. A privilege may be assigned to
a user or a group in Windows. When a user logs on a Windows system, a process will be creasted and
assigned to the user. Then the privileges assigned to the user or the group will be added in the Access Token
privileges list of the user process.

There are many privileges in Windows each dlowing a particular action on the system, but not every
privilege is dangerous for the system security. Only a subset of the entire set of Windows privileges contains
dangerous privileges that can be exploited by a mdicious user. Bdow is an example of dangerous privileges
[HLBO1]:

An Extended Access Control System For Windows XP

= SeBackupPrivilege: permits to a user to perform a backup of some data even if the user has no
access rights to the data.

= SeTcbPrivilege: with this privilege a user or a group is a trusted component of the OS (predefined
account Local System is the only one that has this privilege in Windows by defaullt).

* SeDebugPrivilege: a user with this privilege can debug any process viewing and modifying the
process memory.

= SeAssignPrimaryTokenPrivilege: replace a process leve token.
» SelncreaseQuotaPrivilege: adjust memory quotas for a process

2.2 Privileged and danger ous processes

As discussed above, some privileges are dangerous in Windows OS. If we want to know if a process is
privileged, we must look to the process Access Token of the user that run the process.

A mdicious user can attack these processes, and when the attacker runs a malicious code in the process
context, the attacker gains dl the process privileges. If some privilege is dangerous, the process becomes
dangerous. Simply to identify the dangerous processes, one night look for dangerous privileges into the
process Access Token. Now assume that P is a set of processes, s0 P ={p_L, pz,,.,,pnl} , Where p, py...pu ae
the processes in a Windows system, D is the set of dangerous processes, so D ={d,,d,...., d,,} ; D isasubset
of P, DI P.Assumethat K isthe set of privileged processes K ={k,k,,..., kns}, Kisasubset of P, Ki P
Theset DC K isthe set of privileged and dangerous processes, since in generd DI K the set of privileged

and dangerous processis equa to D.
« Definition: a privileged process is a process with some Windows privilege.
« Definition: a dangerous process is a privileged process that has some dangerous privilege.
We can characterize the set D analysing the processes Access Token. If in the Access Token privileges list

there are one or more dangerous privileges, the process, owner of the Access Token, belongs to D. In the

following, we discuss a particular set of privileged processes. the Services

2.2.1 Services

Almost every OS has a mechanism to start processes at system start up time that provide services not tied to
an interactive user. In Windows, such processes are caled services Services are smilar to UNIX daemon

processes and often implement the server side of client/server applications.

On Windows, many services log-on to the system with a predefined account: System account (called
LocalSystem too). This account belongs to group Administrators and is very powerful because it has many

dangerous privileges. Thisisacritica point for the Windows security.

Often a careful analysis of services could restricts services privileges. This can be done with a new account
defined for the specific service, where this account has less privileges then System account [HLBO1]. To
€

An Extended Access Control System For Windows XP

avoid this security problem, in Windows XP there are two new accounts for services. local service and
network service. These two new XP accounts have minimum privileges necessary to the execution of some
services, typicaly Internet and network services. So an attack to these services is less powerful than an attack
to a service that logon with Sysem account [HLBO1]. Tab. 1 presents the privileges of LocalSystem,
LocalService and NetworkService predefined account. How you can see, LocalSystem has dmogt dl the
Windows privileges whereas Local Serviceand NetworkService have alittle bit of these privileges.

Privilege Local System L ocal Service Network Service

SeCreateT okenPrivileoe
SeAssgnPrimary TokenPrivilege
SelockMemoryPrivilege
SelncreaseQuictaPrivileoe
SeMlachineAccountPrivilege
SeTchPrivilege
SeSecurityPrivilege
SeTakeOwnershipPrivilege
Sel_oadDriverPrivilege
SeSysemProfilePrivileoe
SeSystemtimePrivileoe
SeProfileSinaleProcessPrivilege
Sel ncreaseBasePriorityPrivilege
SeCrestePaoefilePrivilege
SeCrestePermanentPrivilege
SeBackupPrivilege
SeRestorePrivilege
SeShutdownPrivileoe
SeDebuaPrivilege
SeAuditPrivileoe
SeSysemEnvironmentPrivileoe
SeChanaeNatifyPrivileoe
SeRemoteShutdownPrivileoe
SelUndockPrivilege
SeSyncAcentPrivileoe
SeEnableDd enationPrivileoe

Table 1 — Local System, Local Service and Network Service privileges

XIXTXTXT IXPXTXX

X[XY} X XXX XTX

2.2.2 Servicesldentification

To identify a service we must check the SIDs in the process Access Token, precisay the so-cdled Well
Known SDs. We have two possibility: if the service logs on to the system with Local System account, the
user account SID in the Access Token, is equa to siring “S1-5-18" , Local System SID. Otherwise, we must
look in groups SIDs; the process is a service if there is Well-Known SD Servicerepresented by the string “ S
1-5-6”. But it is not smple to know exactly when a process is a service. We need some implications that
help us.

+» Processisa Service b Access Token User SID isequal to Local System SID, or in the Access
Token Group SIDs s present Service SID: if we consider a service process then its Access Token
contains the Local System or Service Well known SID.

« Access Token Group SIDs has Service SIDP process is a Service: if Service Well known SID

appears in the group section of the process Access Token, process is securdly a service

An Extended Access Control System For Windows XP

+ Access Token User SID isequal to LocalSystem SID P process ISNOT NECESSARILY a

service: if user SID is Loca System the process, owner of the Access Token, is not necessarily a
service, it could be a system process too.

If we consider only the first implication, we will find a set of processes that contains securely set of services,
but is not necessarily equals to this set. Below we present a smply pseudo-code test to determine if a process
isaservice or a system process.

If (USER-SID=="Local SystemSID') CR (GROUP-SID includes “Service SID)
(process_t ype=SERVI CE) CR (process_t ype=SYSTEM PROCESS)
el se
(process_type! =SERVI CE) AND (Process_t ype! =SYSTEM PROCESS)

Figure 4 — Test to determine if a processis a service or asystem process.

2.3 Critical and dangerous system calls
In this section, we introduce the definition of system calls in Windows and then we characterize when a

sysem cdl isa critical system call.

2.3.1 Native APIs: Windows system calls

APIs (Application Programming Interfaces) are programming functions held in dynamic library, and run in
user-mode space and kerng-mode space. We call native APIs [Ne00] the APIs in kernd-mode that represent
the system cdll of Windows. We call smply APIs the APIs in user-mode space.

Four dynamic libraries export APIs of the Win32 Subsystem:
User32dIl: interface APIs.
Gdi32dll: graphic interface APIs.
Kernel32.dll: system management APIs.
Advapi32dil: advanced system management APIs (registry, Isass, etc.).

The APIs in user32.dll and gdi32.dll invoke the native APIs implemented in kerne mode by win32k.sys
module, which is the kernd mode of the Win32 subsystem. The APIs exported by kerne32.dll (system APIs)
use a paticular library Ntdll.dll that invokes native APIs in the kernel. Native APIs invoked by ntdil.dll, are
the Windows system calls.

An Extended Access Control System For Windows XP

uoniealddy

User Mode

Kernel Mode

Systemn Service Table

Figure 5— System Service Table (SST).

Figure 5 shows that when an APl of Kernd32.dll is cdled by an application, this AP recdls one or more
functions present in ntdll.dll. This library represents a bridge between user-mode and kerne-mode space
[Ne0O, Osr03]. The user-mode library Ntdll.dll is the front-end of the native APIs, which are implemented in
the Windows kernel, ntoskrnl.exe.

Ntdll.dll exports dl the native APIs with two type of function name prefix: Nt and Zw. True native APIS (in
the kerndl) have the same name of APIs exported by Ntdll.dll, but they are not the same functions.

Figure 6 shows an example of the native APl NtCreateFile(), obtained disassembling ntdll.dll.

N CreateFil e:

mov eax, 0xO000001A
lea edx, [esp+04]
int Ox2E

ret 0x2C

Figure6 - Assembly code of NtCreateFile in NTDLL.DLL.

Function NtCreateFile loads registry EAX with the index Ox1A of the native APl in a particular table cdled
Sygtem Service Table (KiServiceTable, fig. 8), then EDX registry points to the user-mode stack, ESP+04,
where there are the parameters of Native API, and findly raises interrupt Ox2E that executes the System
Service Digpatcher of Windows (defined in Section 2.3.1.1). System Service Dispatcher is the kernd routine
that invokes the true native API in the kernd [Ne00, Osr03].

Not dl the native APl exported by Ntdll.dll are exported by ntoskrnl.exe. This probably, is to prevent
unauthorized use of particular and dangerous native APl by adriver [Scr01, NeOO].

Disassembling the library ntdll.dll, we can observe that every Nt native APl and its corresponding Zw native
AP have the same assembly code represented in fig. 6. If we disassemble rioskrnl.exe, the true native APIs
with the Nt prefix contain the true code of native API, and the native APIs with the Zw prefix have the
representation in fig. 6, see dso [Ne00, Osr03].

An Extended Access Control System For Windows XP

2311 System Servicedispatcher

Dispatcher of interrupt Ox2E isthe System Service Digpatcher routine. It is implemented in the executive
layer of the Windows kerndl, trough the kernd function KiSystemSarvice(). Figure 7 shows that the APIs in
gdi32.dll and user32.dil cal directly the dispatcher KiSystemService(), and after the dispatcher invokes
functionsin win32k.sys module. The APIs in kernel32.dll invoke the functions exported by ntdll.dll and then
that functions cadl the native APIsin Windows kerndl.

Win32z USER and
Winaz kernel APls GDI API=
Call USER or
icaiis Call ¥nteFus..
Wins2 application eFis..) Applicatian | oo servicel...)
WinteFi=in | Gal NilMiteFde | Win32-
Kemel3Zdl | Datunto caller | S0Ecil i
Vit Fife in It 2E Used by al Gazzdi Irk ZE Winaa-
MEll Al | goperito caller | subsystems o User3zdl | Retun to calel | spedfic
l L J User moda
Kemel mods
Software inlemupt Soltware infemmupt
Rispstermnsanvioain | Call MlriteFils KiSyatenrService in | Call Wina2 routing
Mizskrnl exe | Disrmiss interupt Meoskml.exe | Dismiss reerrut
NIF¥eFie in | D the speration Sarvice entry peirk in | Do the cperation
Mieskinl exe | Feturmn 1o calls WIN32REYE | Fetur o caller

Figure 7 - Dispatching of native APlsand USER & GDI APIs.

When KiSystemService() is invoked, the dispatcher runs a series of control. Firgt it controls the vaidity of
index passed in EAX regider, then it controls if the space expected for the native APl parameters is correct
and findly executes the native API in the kerndl or APIsin win32k.sys.

KiSystemService() uses a structure caled System Service Descriptor Table (SDT). SDT is represented by the
KeSrviceDescriptorTable structure (fig. 8), when KiSystemService manages native APIs, but when it
manages win32k.sys APIs, SDT is represented by another structure called KeServiceDescriptor TableShadow
[Scr01, HLBO1].

An Extended Access Control System For Windows XP

KeSarviceDescriptorTable KiSarvicaTabla

ServicaTable *| MiAccepiConnectiPorl 000
CounterTable = NULL MiAccassChack 0=
Servicelimit = (xFB KiArgument Tabée MtAccassChackoandAuditAlanm Ox02
Argument Tabla ™ 018 =00 MiAccessCheckBy Type O0u03
SanvicaTabls = MULL Ox20 0x01 MitAccessChackBy TypeAndAuditAlarm | Ox04
CounterTable = NULL i O3 MiAccassCheckBy TypaResuliList DS
ServicaLimit = 0 L

ArgumentTable = NULL Ox40 0x04

- 0x2C 05

ServicaTable = NULL NiOpenChannel OxF3
CounterTable = NULL MiFleplyWaitSendChannel fixFd
ServiceLimit =4 MtSendWaitReplyChannel 0xF5
ArgumentTable = NULL Oac0f 0xF3 | MiSetContexiChannel 0xF6
ServiceTable = NULL Ox0C | OxF4 | NiYieldExecution oxFT
CounterTabla = MNULL Ox10 OnF5

Sarvicallmit = 0 x4 0xFE

ArmgumeniTable = MNULL Qx00 OuF7

Figure8 —KeServiceDescriptor Table.

Figure 8 shows that KeServiceDescriptor Table has two table pointers. KiServiceTable (System Service Table,
SST) and KiArgumentTable. Firgt table contains an index for every native AP, This index is used by native
APl code in ntdll.dil to invoke the corresponding netive AP in the kernd (fig. 6). Second table contains, for

every ndive AP, the alocation space for native APl parameters. This space is used for the kerne-stack
memory alocation.

2.3.2 Critical and Dangerous native APIs

We have defined a native APl as a Windows system call, but when is a system call in Windows a critica
system cal?

A naive AP is a generic kernd function; it has a function name, a series of parameters and a return value. If
we consider a native API by itsdf, it is not critical, but it becomes critica when dangerous parameters are
passed to it.

Consider a smple example: the native APl NtOpenFile(). Typicaly this native APl opens an handle to a file
on the File System. Its only parameter is a pointer to a string that represents the file name (with path) that
will be opened. If the file name is readmeitxt, this native API is not critical for the system. B, if the file to

be opened is equd to c:\Wwinnticmd.exe the Windows shell, the native APl NtOpenFile with this particular
parameter is critica. So we define a criticd system call asfollows:

R

+ Definition: a critical system call isanative AP that could be invoked with dangerous parameters.

And we define a dangerous system call:

R

« Definition: a dangerous system call is a criticd system cdl invoked by a dangerous process (see
Section 2.2).

« Definition: a critical sysem call is dangerous for the system only if the invocating process is a
dangerous process
|

An Extended Access Control System For Windows XP

A dangerous process that cdls a native APl with dangerous parameters may represents an attack of a

malicious user.

2.3.3 NativeAPI Classification

Native APIs in Windows 2000 and XP are about 250, and only 25 of them are documented by Microsoft
with DDK (Driver Development Kit). All others native APIs are not documented. Fortunately Microsoft

gives us a Uutility, dependsexe that displays al the APls exported by ntdll.dll and al the functions exported
by ntoskrnl.exe

The problem is that we can view only the names of native APIs and not its parameters or its return value.
Gary Nebbet helps uswith a“bible” of native API: “ Windows NT/2000: NativeAPI reference” [NeOQ].

2331 Native API Category

Below a first classification of native APIs by category, suggested by Russinovich [RuS01]. There are 21
categoriesin tab. 2 [Ru98g]:

Index Category Description

1 Special Files [These APIs are usad to credte files that have custom characteristics.

2 Drivers These functions are used by NT to load and unload device driver images from system memory.

3 Pr and Processor registers and components can be controlled via these functions.

Debugging and [The profiling APIs provide a mechanism for samplebased profiling of kemd-mode execution. The debug control
Profiling Ifunction is used by WinDbg for obtaining interna kernd information and controlling thread and process execution.

These functions were introduced in NT 4.0 and are present in NT 5.0 Beta 1. However, they are al stubs thet return

5 Channds STATUS NOT IMPLEMENTED. Ther names imply tha they were intended to provide access to ¢

lcommunications mechanism.

There is only one Native APl for power management in NT 4.0. Interestingly, this APl was introduced in NT 4.0,

»

6 Pover but wes a stub that returned STATUS NOT_IMPLEMENTED. NT 5.0 (2000) fleshes out the APl and adds more
commands.
Like the Power API, some of these were introduced in NT 4.0 as unimplemented functions. NT 5.0 fleshes them out|
7 Plugand-Play
land adds more.
8 Obiedts Object manager namespace objects ae crested and manipulated with these routines. A couple of thess like
) NtClose, are generd in that they are used with any object type.
9 Registry IWin32 Registry functions basicaly map directly to these APIs, and many of them are documented in the DDK.
10 Local Procedure |LPC is NT core interprocess communications mechaniam. If you use RPC between processes on the same computer
Call ou are using LPC indirectly
11 Security The Native security APIs are mapped dmost directly by Win32 security APIs.
12 PrT: :hErE eadsss :;md [These functions control processes and threeds. Many have direct Win32 equivaents.
13 Atoms JAtoms dlow for the efficent sorage and referencing of character strings
14 Error Handling |Device drivers and debuggers rely on these error handling routines.
15 Ex_ecunon These functions are related to generd execution environment.
Environment
16 Timersand /iy 41y 4l these routines have functionality accessible via Win32 APis
System Time

Most synchronization objects have Win32 APls, with the notable exception of event pairs. Event pairs are used for

17 Synchronization |ijoin nerformance interprocess synchronizati on by the LPC facility.

18 Memory Mogt of NT virtud memory APIs are accessible via Win32.
19 F|Iean|<jc()3meral File 1/0 is the best documented of the native APIs since many device drivers must make use of it.

20 Miscdlaneous |[These functions do not fal neatly into other categories.
21 Job These functions implement Job objects which are new to NT 50. They ae essatidly a group of associated
S processes that can be controlled as a Single unit and that share job-execution time restrictions.

Table 2 —Native API categories

An Extended Access Control System For Windows XP

Table 2 shows that in Windows we have many system calls, for every type of work. Linux give us many

information with its source code on its system calls, while Windows does not give us any information on its
system call.

For every native APl category we could analyse what are the Windows critical system calls, but to do this we

must implement a general-purpose monitor for these system call. Now thisis not in our work objectives.

3 THEWHIPSPROTOTYPE

WHIPS is a prototype for the detection and the prevention of the invocation of dangerous system calls in
Windows. This prototype is based on the initid idea rdaed to the REMUS Project [BGM0Z. REMUS is a
Reference Monitor (RM) for Linux OS and, in its first version, it was implemented like a RM embedded in
the Linux kernd: a patch to kernel source code and a recompiling process. The new verson of REMUS is
implemented with a dynamic loadable module of Linux kernd.

WHIPS is implemented as a kernd driver, dso caled kerne module, usng undocumented structure of
Windows kernel and dso the routines typicaly employed for drivers development [BDP29]. The WHIPS
prototype can be seen as a system cal RM for Windows.

3.1 Reference Monitor for Windows XP

Ntdll.dll or Wrapper

crtical system call

Y

Blocked Accepted
M Reference s > Kernel
Monitor

I

Access
Control
Database

Audit
File

Figure 9 — WHIPS Reference Monitor.

A Reference Monitor is a black box that filters every critical system call invoked by a process and establishes
if the critica system cdl is dangerous, as defined in Section 2.3.2 If the system cdl is not dangerous it will
be passed to the kerndl for the execution, otherwise it will be stopped and not executed. RM control policies
are established by asmal database called Access Control Database (ACD).

An Extended Access Control System For Windows XP

ACD includes rule for a subset of every criticd system call and every dangerous process (Cartesian product).
For every critical system cdl, if a rule exists in the ACD matching system cal name, parameters and
invoking process, the system call is executed, otherwise it is stopped. The ACD definesthe allowed actions
for RM. Now we examine the RM implemented by WHIPS.,

Every time a process invokes a critica system call through ntdll.dll or a wrapper (a code that rise int Ox2E),
the dangerousness of the process is checked by WHIPS RM; the RM checks the match through dangerous
process, critica system call and its parameters with the ACD rules. If a rule exists that satisfies this match,
the native AP is executed otherwise is not executed because it is a dangerous system call.

The technique we have used in WHIPS, suggested by Russinovich, Dabak et al. [Cru97, BDP99], replaces
the native APIs pointers in the System Service Table (fig. 10), with pointers to new native APIs supplied by

us. New native APIs are wrappers to original native APIs and implements RM concepts.

uaoieaddy

Mew native APT

T new pouters

User Mode

Kernel Mode

original native AFT

Systermn Service Tahle

Figure 10 — WHIPS implementation architecture.

For every origind critical native APl we have introduced a new native API, where it has the same function
name with a prefix New (ex. NewNtCreateFile). This new APl anadyses its invoking process and its

parameters. if nvoking process is dangerous and AP is critical we know that the native AP is dangerous, so
origina AP! isnot caled and not executed, otherwiseit is caled and executed.

3.1.1 AccessControl Database

In the WHIPS prototype the Access Control Database, ACD, is implemented by a smple text file (protected
by the system ACL and ble only to the Administrator). The structure of agenericruleinthe ACD is.

14

An Extended Access Control System For Windows XP

Rule Type Process name Native APl Name ParamAPI [1] ... ParamAPI [n]
Definesif the Dangerous
ruleisan . . Critica native API .
effective rueor |nvoIT\|lng process name (with prefix Nt). Parametersof the native AP!.
alogging rue ane.

Table 3 -ACD Rule schema

- Rule Type can be debug or rule When the type is rule, this means that the rule filters he execution of
system cal. When the type is debug, the execution of acritical system call will be traced and not filtered.

- Process Name: is the name of the executable image that has activated the dangerous process. This name is a
gring that identifies only the name and not the complete path. WHIPS prototype works entirely in kernd-
mode and it has not access to process block to retrieve the complete path of executable image. This

information is accessible only in user-mode.

- Native API: isthe name, with prefix Nt, of the critical native APl invoked by Process.

- Param[1..N]: are the actual parameters of the critical system call.

These ACD rules state that the process Process Name can execute the specific Native API with the specific

Paran 1..N] . Now we examine some functions of WHIPS implementation.

3.1.2 System Service Table patch implementation

WHIPS is a kernd module, also caled a driver in Windows. Now we examine a C-like representation of the
source code that realize the patch to the System Service Table (SST) of Windows.

Figure 11 shows the main function of the WHIPS prototype. This is the common main function of dl the
drivers in Windows OS. This function does not driver any peripheral of the System and the only work that it
does is caling the HookServicesfunction at system start-up.

DriverEntry(Driver(hj ect)

ProcessNane f set =Get Pr ocessNanme f set () ;
| oCr eat eDevi ce(Dri ver (oj ect, ... &levi ceNane, , ... &levi ce(hj ect) ;

if (CeateDevice_success) {
1 oQr eat eSynbol i cLi nk (&devi celLi nk, &levi ceNane) ;
HookSer vi ces() ;
Dri ver oj ect- >Maj or Funct i on[| R°P_M_CREATE]
Dri ver (oj ect- >Maj or Funct i on[| RP_M_CLCSE]
Dri ver Qoj ect- >Maj or Funct i on[| RP_MI_DEVI CE_ CONTRCOL]
Dri ver oj ect- >Dxi ver Unl oad
return;

Driver D spat ch;
Dri ver Unl oad;

return;

Figure 11— WHIPS main function.

Figure 12 shows the Glike representation of the System Service Table (SST) patch. The first operation that
it does is to load the ACD database in the kernd memory with LoadDB function, and then it patches the

1£

An Extended Access Control System For Windows XP

SST. With macro SYSTEMSERVICE it first saves the old reference to the native API in OldNtApiName, then

subgtitutes the old references in the SST with the new references to the new native APIs supplied by us.

HbokSer vi ces()
{

LoadDB("RDB. rbt", & ul eArrayRM &iunrul eRV);

AdNQeateFile =SYSTEMSERVI CE(ZWCr eat eFi | €) ;
a dNt QoenFi | e =SYSTEMSERVI CE(ZwQpenFi | €) ;

A dN Del eteFil e =SYSTEMSERVI CE(Zwel et eFi | e) ;
a dNt QpenPr ocess =SYSTEMBERVI CE(ZwQpenPr ocess) ;
d dNt Unl oadDr i ver =SYSTEMSERVI CE(Zwunl oadDr i ver) ;
A dNt LoadDr i ver =SYSTEMSERVI CE(ZwLoadDx i ver) ;
a dN d ose =SYSTEVSERVI CE(Zwd ose) ;

Di sabl e_Interrupt;

SYSTEMSERVI CE(ZWCr eat eFi | e) =NewNt Or eat eFi | e;
SYSTEMBERVI CE(ZnQpenFi | e) =NewNt QpenFi | e;
SYSTEVBERVI CE(ZwPel et eFi | e) =NewNt Del et eFi | e;

SYSTEMSERMI CE(ZwpenPr ocess) =NewNt QpenPr ocess;
SYSTEMBERVI CE(2wl oadDri ver) =NewN Unl oadDri ver;
SYSTEMSERVI CE(ZwLoadDrx i ver) =NewNt LoadDri ver;
SYSTEMBERVI CE(Zwd ose) =NewNt A ose;

Abl e_Interrupt;

return;

Figure 12 —System Service Table patch.
3.1.3 New native API Implementation

Figure 13 shows the representation in C-like of the NewNtOpenProcess. When a process cdls the
NtOpenProcess, the new native APl NewNtOpenProcess analyse its parameters. In this case it detects the
process name of its invoking process, and the process name that will be opened by the native API.

After it gores this data in a temporary rule cdled rule. This rule has a structure much similar to arule in the
ACD, and we have cerate it to smplify our work.

Next thing to do is evauate if the invoking process is a dangerous process. We know that the process is
critica because we have done a patch to this native API. The function isProcessDangerous() anayses the

Access Token of theinvoking process and return true if the process is dangerous, fal se otherwise.

The function VerifyDebugNativeAPI() analyses if the native APl must be traced in the debug environment,
while VerifyNativeApi() looks in to the ACD database to find a rule that satisfy the temporary rule. Only if
this function return true, origind native APl is caled with the invocation of OIdNtOpenProcess() saved in
the HookServices function.

An Extended Access Control System For Windows XP

NewNt QpenPr ocess(phPr ocess, ...pd i ent | d)

{
st art Ti meO=KeQuer yPer f or nanceCount er (& r equency) ;
Get Process(currProc);
Get ProcessByProcesslI D(pdient, pdientld);

rul e. processNane=cur r Pr oc;

rul e. api =" nt openpr ocess";

rul e. nunpar an¥1;

rul e. api _paran 0] =pd i ent ;

Qur r ent Pr ocessl| sDanger ous=i sPr ocessDanger ous() ;

if (VerifyDebugNativeAP! (rul e, Qurrent Processl sDanger ous))
I nsert_Debug_| nf ornati on;

if (VerifyNativeAPl (rule, QurrentProcessl sDangerous)) {
endTi neO=KeQuer yPer f or manceCount er (& r equency) ;
Show _Over head | nf or mat i on;
d dNt QpenPr ocess(phProcess, ...pdientld);

el se {
endTi neO=KeQuer yPer f or manceCount er (& r equency) ;
Show Over head_| nf or nat i on;

sendToDebug(r ul e, Qurrent Processl| sDanger ous) ;
return;

Figure 13 — An example of NewNativeAP! implementation.

3.2 Performance Evaluation

The actud impact of WHIPS on the global system performance is negligible for al practica purposes. This
is mainly because the number of critical system call invocations is smdl with respect to the total number of
ingtructions executed by a process. However, in order to evaluate even the minima overhead introduced by
the WHIPS prototype, we have devised further experiments based on micro benchmark. In particular, the
kerne function KeQueryPerformanceCounter() exported by the kernd is used. The header function is shown
infig. 14:

LARGE | NTEGER KeQuer yPer f or manceGount er (PLARGE | NTEGER Per f or manceFr equency);

Figure 14 — KeQueryPerformanceCounter function.

KeQueryPerformanceCounter() returns the clock ticks counter @tick) from system boot, while the clock tick
counter per second (#tick/sec) is expressed by the function Performancefrequency.

If we would calculate the execution time of a piece of code, we may consider two invocations of function
KeQueryPerformanceCounter (). These two invocations determines respectively #tick, and #tick,.

Hick, is the first invocations time and T, = ficky is the

Assume T, =
' Performanc eFrequency Performanc eFrequency

second invocations time. We must consider that KeQueryPerformanceCounter() introduces an overhead too,

and we cal this DT, To esimate DT,

OverheadKQuery * OverheadKQuery?’ we have measured two consecutive

invocations of KeQueryPerformanceCounter ().

An Extended Access Control System For Windows XP

Assume DT is the execution time of a generic source code block between two invocations of

KeQueryPerformanceCounter (), then DT = (T, - T,) - DTq peadkeuery

DT cannot be less than DT,

3
OverheadKQuery?’ so DT 2 DT,

overheadkauery+ 1 NIS IS true because if the source code
block between two invocations of KeQueryPerformanceCounter() is empty then overhead is equd to
DT,

OverheadK@uery-*

3.2.1 Overhead of new native APIs

In figure 15 we havethe daboration block that contains the code to check the parameters of the native APl
and the level of danger of the invoking process.

To edtimae overhead introduced by a generic new native APl under the WHIPS prototype, consider

_ startTimeO _ endTimeO

1= , =———, 0 the overhead introduced from any new native APl is
frequency frequency

DTOverheadeNativeAPl = (T2 - Tl) - DTOverheadKQuery'

NewNt Api Nane(..)
{
st art Ti meO=KeQuer yPer f or nanceCount er (& r equency) ; /1 T1

[El abor ati on_Bl ock]

if (VerifyNativeAPl (rule, QurrentProcessl sDangerous)) {
[}

endTi meC=KeQuer yPer f or manceCount er (& r equency) ; /1 T2
a dN Api Nare(..) ;
Show _Over head | nf or mat i on;

el se {
endTi meO=KeQuer yPer f or manceCount er (& r equency) ; /1 T2
Show_Over head_| nf or mat i on;

}

[}

return;

Figure 15— Overhead of a generic NewNtApiName.

We have measured the execution time of the original native APIs in Windows, we call this DT, . eapr

Todo

this, we have inserted a cdl to function KeQueryPerformanceCounter() before the invocation of the origind
API, and after the original native API calls completes (fig. 16).

_ startTimeA and T, = endTimeA

Assume T, = frequency 2 m J nativeAPl — (rz - Tl) - DTOverheadKQuery'

An Extended Access Control System For Windows XP

Newht Api Nane(..)
{

[}

start Ti meA=KeQuer yPer f or manceCount er (& r equency) ; /1 T1
a dN Api Nane(..) ;
endTi meA=KeQuer yPer f or manceCount er (& r equency) ; /1 T2

[}

return;

Figure 16 —overhead of an original NtApiName.
3.2.2 Methodology of M easurement

The system utilized for the measurement is a Personal Computer with AMD Athlon CPU, with clock
frequency of 1200 Mhz, 512 Mbytes of RAM and Windows 2000 OS.

For every native APIs intercepted by the WHIPS prototype, we have performed a significant number of
experiments (~10.000), and we have daborated these to obtain average times without spiced values. We have

determined the average overhead introduced by every new native AP, DT overheadnanativeart, and the average

time of origind native APl, DT naiveap! .
The average overhead of function KeQueryPerformanceCounter(), DT overheadkeuery, 1S ~0,82 NEEC on our
Test PC. For every measurement:

* —
% DToverneadne wnativerrt = (T2, overheadie whativeaPl = 11, Overheadie wiativeaPl) = DT Overheadke Query

X = - -
" DTNativeAPI (TZ,NativeAPI Tl,NativeAPl) DT overheadeqery -

AP Average Execution Time API Incidence
API Time Overhead Time % Overhead
DT NativeAPI DT OverheadNe/NativeAPI
(eec) (mSer) %)

A (0] I: O/A*100
NtClose 7,67884 6,36530 83%
NtCreateFile 246,74359 2151743 9%
NtOpenFile 53,56300 20,67006 3%
NtOpenProcess 8,49002 23,23371 274%

Table 4 — Comparative table ApiTime and OverheadTime.

Table 4 compares execution time of the origind native APl @) with the overhead introduced by the
corresponding new native APl (O). As you can see, the overheads (O) are almost the same, except for the
NtClose native API. In fact the new native APl NewNtClose performs few operaions in the
Elaboration_Block of fig. 15, since it accepts few parameters. As for NewNtOpenFile and NewNtCreateFile,

1€

An Extended Access Control System For Windows XP

in Elaboration Block, the name of the handle parameter of the native APl must be determined, and this
cause an overhead of ~20 neec. The last column () shows the percentage incidence of the new native API

overhead on the execution time of origina native API.

In NewNtOpenProcess the overhead is bigger than NewNtClose, this because in NewNtOpenProcess we

determine the name of the process parameter of the native API.

300%
250% +
200%

S 150% T
100%

50% T

0% 1 | 1 .

NtClose NtCreateFile NtOpenFile NtOpenProcess

native API

| @ OverheadTime/ApiTime (1)]

Figure 17 — OverheadTime and ApiTime ratio.

The figure 17 shows a bar chart with percentage incidence (1) of every native API intercepted by the WHIPS
prototype. As you can see the highest incidence is NewNtOpenProcess incidence that introduces an overhead
of 274% respect to NtOpenProcess execution time. Lowest incidence is of NewNtCreateFile that introduces
an overhead of 9% respect to NtCreateFile executiontime.

An Extended Access Control System For Windows XP

300

250 T —

200 T

150 1

microsec.

100 T

e wm| w] -

NtClose NtCreateFile NtOpenFile NtOpenProcess

native API

| OverheadTime (O) @ ApiTime (A) |

Figure 18 — Comparison between OverheadTime and ApiTime chart.

In figure 18 you can see a comparative bar chart between the overhead introduced by new native APIs (O)
and the execution time of origind native APl (A). Higher is the difference from the overhead and the
execution time and higher is the percentage incidence (1).

If we consider for ex. NtClose we have a minimum difference, and this means that the overhead introduced
by WHIPS is near to the execution time of origind native API. In the case of NtCreateFile the overhead is

much lesser than the execution time and the incidence is low. In NtOpenProcess the overhead is bigger than
the origind native APl execution time and the incidence is high.

RELATED WORKS

As for Windows OS, we could not find related works that follows similar idess at the OS level, perhaps this
is because it is hard to design and to implement solutions in the Windows OS kerne based on undocumented
functions.

A related work for the Linux OS is the REMUS Project [BGM02] which implements a reference monitor for
the system cdl invocations in a loadable Linux kernd module. In REMUS, root processes and setuid
processes are privileged processes, and a dangerous system cdl is a critical syslem call invoked by a
dangerous process.

CONCLUDING REMARK

Our work defines privileged processes in Windows OS and proposes a methodology to discover the

processes that can be dangerous for the system. We have two ways, one implemented in our prototype, and

2

An Extended Access Control System For Windows XP

the other in study. Defining dangerous processes is the first and much important step in this type of HIPS.
Next, we have characterized when a system call is critical in Windows OS. Union of dangerous processes
and critical system calls lead to the concept of dangerous system calls (see Section 2.3.2).

We have implemented the WHIPS prototype based on the above concepts. WHIPS stops common exploits
that use buffer overflow technique to do privilege escalation on a system. If a malicious user wants to
execute a shdl in a context of the exploited process, WHIPS will prevent the attack by stopping the
execution of the dangerous system cal that invokes the shell. This system cdl is dangerous because it is

critical and a dangerous process invokesit.

Future works include the inspection of al the native APl in Windows OS for a full classfication of the
system calls according to their level of danger for the system security. Another step could be to implement a
Web-sarvice like Windows Update named WHIPS ACD update that permits to download new sets of rule to
configure the ACD auomaticaly. This smplifies the definition of the rule in the ACD database. WHIPS
could be more efficient if implemented directly in Windows kernel, but to do this we must access the source
code of the Windows kerndl, and at the moment this is not alowed by Microsoft license agreement.

ACKNOWLEDGEMENTS

We would like to thank Dgan Maksmovic for useful suggestions on the implementation of WHIPS
prototype. The authors gratefully acknowledge the anonymous reference for their helpful comments.

REFERENCES

[ARS] Abrams et d., “Information Security: An Integrated Collection of Essays’, IEEE Computer
Society Press, 1995.

[Al96] Aleph One, “ Smashing the stack for fun and profit”, Phrack Magazine, vol 49, 1996.
[AnO1] Anonymous, “Maximum Windows 2000 Security” , SAMS Publishing, 2001.

[Bagsg] Badger, “Information Security: From Reference Monitors to Wrappers’, Trusted Information
Systems, IEEE AES Systems Magazine, Mar. 1998.

[BGM02] Bernaschi, Gabridli, Mancini, “REMUS. a security-enhanced operating system”, ACM
Transactions on Information and System Security, Vol. 5, No. 1, pp. 36-61, Feb. 2002.
http://remus.sourceforge.net/.

[BDP99] Borate, Dabak, Phadke, “ Undocumented Windows NT”, M& T Books, 1999.

[CRuU97] Cogswell, Russinovich, “Windows NT System-Cal Hooking”, Dr. Dobb's Journd, p. 261,
1997.

[Co00] Cowan ¢ d, “Buffer Overflows: atacks and defences for the vulnerability of the decade’,
Proceedings IEEE DARPA Information Survivability Conference and Expo, Hilton Heed, South
Carolina, 2000.

[CuR01] Cunnigham, Russd, “Hack Proofing”, McGrawHill, 2001.

An Extended Access Control System For Windows XP

[Du01]

[HLBOY]
[1SS98]

Dutertre, Riemenschneider, Saidi, Stavridou, “Intrusion Tolerant Software Architectures’,
Proceedings IEEE DARPA Information Survivability Conference and Expostion, Anaheim,
Cdifornia, 2001.

Howard, LeBlanc, “Writing Secure Code”’, Microsoft Press, 2001.

ISS, “Network- vs. Host-Based Intrusion Detection”, Internet Security Systems, Atlanta, 1998,
http://documents.iss.net/whitepapers/nvh_ids.pdf.

[MPSWO03]Moore, Paxson, Savage, Shennon, Staniford, Weaver, “Insde the dammer worm”, IEEE

[Mi024]

[Mi02b]

[Ne0Q]

[ONn9g]
[Osr03]

[RuS01]
[Ru98]

[ScmO1]
[ScrO1]

Security& Privacy, pp.33-39, July-August 2003.

Microsoft, “Well-Known Security Identifiers in Windows 2000", Knowledge Base243330,
2002, http://support.microsoft.com/default.aspx?scid=K B;EN-US;Q243330& .

Microsoft, “Always Preemptible and Always Interruptible’, Microsoft Software Development
Network (MSDN), 2002,

http://msdn.microsoft.com/library/default.asp?url=/library/en-
uskmarch/hhkmarch/intro_525j.asp.

Nebbet, “Windows NT/2000: Native APl reference’, Macmillan Technical Publishing (MTP),
2000.

Oney, “Programming the Microsoft Windows Driver Model”, Microsoft Press, 1999.

OSR Open System Resources Inc, “Nt vs. Zw - Clearing Confusion On The Native API”, The
NT Insider, Val 10, Issue 4, July-August 2003, Published: 15 Aug-03.

Russinovich, Solomon, “Inside Windows 2000: Third Edition”, Microsoft Press, 2001.

Russinovich, “Insde the Native API”, Systems Internals, 1998,
http://www.sysinternals.com/ntdll.htm.

Schmidt, “Microsoft Windows 2000 Security Handbook”, Que, 2001.
Schreiber, “ Undocumented Windows 2000 Secrets’, Addison Wedley, 2001.

An Extended Access Control System For Windows XP

SUMMARY
AULNOIS ...t e e e e e et e e e e bt e e e e eabee e e e aabeeeeaataeeeesbaeeesanbeeeeasbeeeeanbbeeeesannees 1
F N 1S 1 v PSPPSR 1
N 1y 1 0o (0o i oo (PRSP R 1
2 Security Problem: privileged processes and critical system CallS.........ooceevviieiiiiin i, 2
21 ProCESS SECUNLY CONEEXL.uviiitiieitie ettt sttt st et e et e e e sate e sabe e sbe e e seeeesabeeebneean 2
211 Security |dentity DESCITPIONcoiueieiiee ittt ettt stee ettt et sabe e ssbe e e saeeesneee e 3
202 ACCESS TOKEN ...ttt ettt ettt bttt e ettt e s s be e s bt e e be e e ssbeesnbe e e sbbeesnbeeesnreaea 3
P G T 11100 = £ o0 (o o H RO PRSPPI 5
214 WiNAOWS PrIVIIEOES. ... ettt ettt bb e et e e e sabe e e s anbeeaeeans 5
2.2 Privileged and dangerOUS PrOCESSESueeirtereiieeeriiiesieeanteeesiteesteeesteeesabessnbeeanbeeesnbeesaseeesnneaans 6
N S = 4V [=TSP PRPTOTRRPRRN 6
222 SErVICES IABNLTICAON. ...ceiiiiiie ittt st e e s nbeeereeeaas 7
2.3 Critical and dangerous SyStemM CallS.......cccocuuieeiiiiie e 8
231 Native APIS WINdows System CaAllScccviiiiiiiiic i e e a e e 8
2311 System SEVICE AIPACNEN ...cciiei e e e 10
2.3.2 Critica and Dangerous NAtiVE APISc.uuiri i e e e e e s srae e e 1
233 Native APl ClassifiCatioN..........ceiiiiiiiiii ittt 12
2.3.3. 1 NAVEAPI CaEQOIY....cciieeeiieeeiiieeeeieees teeeetee e s steeesstaeaestee e s eeesraeeanseeeesseeesnraeeesns os 12
K T I 0 SRV o 1= Y o001 o= SRS 13
31 Reference Monitor fOr WINAOWS XP........oouuiiiiiii ittt 13
311 AcCCESS CONLIOl DEANASEeeeiieeieiitie ittt sae e e s ebe e e snreea 14
312 System Service Table patch implementationcocev e e 15
313 New naive API IMPlemMENtationccccueeeriiiiee e e s e eser e s seee e e snrnee e e s nneee e e s nnneeas 16
3.2 Performance EVAIUBLIONoouiiiiiiie ettt s 17
321 Overhead of NEAW NAIVE APISot ae e saee e 18
322 Methodology Of MEBSUrEIMENTccvieeeeiiieeeeciie e e s eee e s s e e s st e e s e e e enre e e e enee e e e snneeeesnnnees 19
REGEI WWOTKS. ...ttt e ke e e b et e e ehb et e e et e et e ek b e e e sbb e e e amne e e anbe e e anbeneeeeaa 2
(0000101 1U o [g To [= 0= SRR 21
ACKNOWIBAGEIMENTSeeee ettt e e e e e s s et e e e s st e e e s sste e e e e e nneste e e e s annaeeeesanseneeeeannes 2
G (= 1= 10 = O TP P T PP PR PPPOPPPTRPR 2
SUMIMIBIY ..ttt ettt e e et e e s sttt e e e e a bbbttt e e aas £eeeaaas b b e e e e s e sbbee e e e s aanbbe £ e e abb e e e e e e annbbe e e e e e annbbeee sannnsebbeees 24

i

